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Abstract-Few-shot slot tagging is an important task in de­
veloping dialogue system. Most previous few-shot slot tagging 
models classify an item according to its similarity to the repre­
sentation of each class. These models leverage context information 
implicitly through each words' contextual embedding. However, 
the entangled language features of words may interfere with 
context information, misleading the utilization of crucial slot 
features in few-shot scenario. To tackle these problems, we 
propose the Decoupled Context Enhanced Network (DCEN) 
for few-shot slot tagging. Different from previous models, we 
extract decoupled context explicitly to make full use of slot 
features contained in the context. Decoupled context includes 
two parts, local and global decoupled context information. We 
introduce a local extractor to extract local decoupled context 
by integrating information from adjacent words, and a global 
extractor based on transformer to extract global decoupled 
information by orthogonalization. Experimental results on SNIPS 
show that our model achieves the state-of-the-art performance 
with considerable improvements. 

I. INTRODUCTION 

Slot tagging is a core task in natural language understanding 

(NLU), which is a key component of task-oriented dialogue 

system. Slot tagging is usually formulated as a sequence 

labeling problem [1], [2]. 

For slot tagging task, conditional random fields (CRF) [3] 

is a commonly used approach. Recently, neural models have 

become the de-facto standard for high-performance system. 

Although deep learning models have demonstrated their power 

for slot tagging task [4], [5], these models require abundant 

labeled training data in the target domain. To address data 

scarcity in new domain, few-shot learning technique [6], 

[7] becomes appealing. This technique extracts transferable 

knowledge among old domains and quickly transfers the 

model to a new domain with only a few examples [8]-[10]. 

The similarity-based few-shot learning methods classify 

an item in a new domain according to its similarity to the 

representation of each class, and have been widely used in 

classification problems [9], [11], [12]. To extract features of 

items in source domains, a general encoder is learned in prior 

rich-resource domains. These models obtain the representation 

of each class from few labeled samples of support set. Most 
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few-shot slot tagging models [8], [10], [13] usually consider 

the following information: contextual word embedding, label 

semantic features and label dependency. 

However, previous few-shot models do not consider the 

relationship between words and their corresponding contexts 

[8], [10]. Traditional contextual word embedding contains 

only a portion of the context information and loses the 

other word-independent context information. Also, in some 

cases, the information of the word itself may even lead to a 

misleading effect. For example, in figure 1, they will compute 

the similarity between the embedding of Mojito and the class 

representation of class B-song (average of the embeddings of 

Angel and baby). We classify the song by considering more 

the similarity of its context (add and to) because Mojito may 

be far away from baby (or Angel) in embedding space but the 

contexts of them are very similar. In this case, information 

of Mojito in contextual word embedding will be misleading 

when we classify. 
In this paper, we propose a Decoupled Context Enhanced 

Network (DCEN) to explicitly utilize decoupled context in­

formation which does not contain information about the cor­

responding word to avoid misleading effect and the loss of 

context information. Decoupled context information includes 

two parts: local decoupled context information and global 

decoupled context information. The former is used to model 

the short-range context information, e.g., B-song usually come 

after add. The latter is used to model the long-range context 

information, e.g., Words between my and playlist are more 

likely to be B-playlist or 1-playlist (The name of a play list may 

have several words). We introduce Context Attention Module 

(CAM) which is based on self-attention to capture global 

decoupled context. For local context, we introduce Context 

Window Module (CWM). CWM obtains local decoupled 

context by obtaining collective representations of the adjacent 

words. 

Our contributions are summarized as follows: 

• We propose DCEN for few-shot slot tagging, which uses 

decoupled context information to avoid misleading effects 

caused by the representation of the words, and captures slot 

features of the context comprehensively. 

• We explore approaches to make use of local and global 
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Fig. 1. Left part is an example of few-shot slot tagg ing . Right part shows the context information and decoupled context information of the blue words. 
Decoupled context is different for each word and no information about the word is in the corresponding decoupled context. 

decoupled context information. Extensive experiments show 
separating word and context features are both effective for 
improving few-shot slot tagging performance. 

• We demonstrate the effectiveness of our model on the 
benchmark dataset SNIPS and achieve SOTA results. Further 
analyses show that by fusing the extracted decoupled context, 
our model can release underutilization of limited context 
information. 

II. REL ATE D WORK 

A. Slot Tagging 

For slot tagging task, conditional random fields (CRF) [3] 

and recurrent neural networks (RNN) [14], [15] are commonly 
used methods. Recently, joint models [16], [17] become popu­
lar because they are able to consider the correlated relationship 
between slot tagging and intent detection. [18]-[20] propose 
model to improve performance of slot tagging and intent 
detection via mutual interaction. 

B. Few-shot 

Traditional methods for the few-shot learning in image 
classification field primarily focus on metric learning [7], [21], 

which aims to learn a general distance metric and use it in the 
new domain. [12] further develops Prototypical Network by 
constructing a task-adaptive space based on label references. 
These models classify an item according to its similarity to 
each class's representation. 

In natural language processing, few-shot researchers' focus 
is primarily on text classification [9], [22], [23]. Also, zero­
shot intent detection has been explored [24], [25] with a Gaus­
sian mixture model and Capsule Neural Network. Recently, 
researchers are paying more and more attention to the few­
shot learning of the slot tagging task. [26] investigates few­
shot slot tagging using additional regular expressions. Zero­
shot slot tagging approaches [27]-[29] achieve impressive per­
formance by using label name semantic features (description 
of the class label and examples of slot values) in zero-shot 
setting. [8] explores few-shot named entity recognition (NER) 
with Prototypical Network. [10] exploits the Label-enhanced 
TapNet with collapsed dependency transfer (CDT) for both slot 
tagging and NER tasks. By considering both label dependency 
transferring and label name semantics, [10] achieves much 
better performance. 

III. APP ROACH 

In this section, we describe the proposed DCEN model 
in details (shown in Figure 2). The model first gets the 
embeddings of each word from BERT [30]. Then L-TapNet 
is used to calculate the word emission score in the word part. 
To extract decoupled context of each word, Context Attention 
Module and Local Window Module are utilized in context part. 
The Context Attention Module attends full-range contextual 
information by modified self-attention while the Local Win­
dow Module focuses on short-range contextual information 
by gathering features from neighbouring words. Finally, we 
combine context emission score with word emission score as 
the emission score of CRF. 

A. Word Part 

In word part, we feed the word embedding to L-TapNet. 
After that, the word emission score is calculated by vector 
projection similarity function with output of L-TapNet. 

L-Tapnet TapNet is a few-shot image classification model. 
Different from previous few-shot model (such as Prototyp­
ical Network), TapNet calculate word-label similarity in a 
projected embedding space, where the words of different 
labels are well-separated. L-TapNet further develops TapNet 
by constructing a projection space with label semantics. 

Vector Projection We use vector projection similarity 
function (VPB) from [13] to compute similarity. The similarity 
is calculated by dot product between word embedding a:i 
and each normalized label vector ck. In order to reduce false 
positive errors, the half norm of each label vector is utilized 
as an adaptive bias term: 

T Ck 1 
SIM(a:i,ck) = a:i � - 2 II Ck II 

This function can help eliminate the impact of ck's norm 
which may be large enough to dominate the similarity metric. 

B. Context Part 

In context part, we feed the decoupled embedding to 
TapNet. Using Vector Projection, context emission score is 
obtained by combining local and global context emission 
scores. The TapNet and Vector Projection are the same as 
section III-A. 
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Fig. 2. Architecture of our proposed DCEN model. It consists of four parts: a) Embedding layer tranforms words to embedding . b) Word part calculates the 
word emission scores for the query instance based on the prototypes derived from the support set. c) Context part calculates the context emission scores. d) 
Transition scorer uses collapsed dependency transfer to compute transition score. 
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Fig. 3. lllustration for Context Window Module. We concatenate the embed­
ding of adjacent words of the word (the blue one) and feed new embedding 
to Feed-forward Network. 

Context Window Module Given an utterance x 

( x1, x2, . . . , Xn) with n words, where Xi is the ith word of the 
utterance. We expand x to x', in which padi is zero tensor: 

where w is window size (as shown in Figure 3) which 
determines the coverage of the input. In order to obtain 
decoupled context about x:, we exclude x: from the input. 
For each word, we can obtain its local decoupled context 
embedding e� by integrating information from adjacent words: 

FFN(·) is Feed Forward Network and E(x:) is the embed­
ding of x:. 

/---------------------------------------------------------------., 
f Context Attention Module l 

Layer Normalization 

Cmrtext Attention Layer 

' 

yl 

l �1 
; q�,l 
· � � � 

Word Embedding Input Embedding 
\ .. _______________________________________________________________ ) 

Fig. 4. The architecture of the g lobal context extractor and illustration of the 
context attention layer. 

Context Attention Module For an utterance x 

(x1, x2, • . •  , xn) with n words, we first get e 

(e1, e2, ... , en) where ei = E(xi)- Then we add position 
signal [31] toe and obtain e' = (e�, e�, ... , e�)- Afterwards, 

e' is fed to context attention layer (see Figure 4): 

n 

y� = LCijVj j=l 
(
QKT- diag[(Inf(l)• ... , Inf(n)]) C = softmax 

.,jdk dk 

To better model the long-range context, we adopt transform 
encoder [31 ], which maps the matrix of input vectors to queries 
(Q), keys (K) and values (V and Vj is a element for the 
lh word) matrices by using three different linear projections 
and C is a weight matrix (Cij is a element). dk denotes the 
dimension of keys, and diag[·] means diagonal matrix. Inf 
is positive infinity. 

Vanilla Tranformer is designed to acquire precise word 
embeddings by considering global self-attention. However, our 
interest is to disentangle global decoupled context information 
of each word. To achieve this, we adopt mask technology as 
the decoupling method. By masking the innate information 
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of the word through orthogonalization, the obtained global 

context information circumvents misleading effects of each 

word's own meaning. After softmax function, the element 

(cii) corresponding to the position of the negative infinity 

element will become zero. In this way, the output of context 

attention layer y� is able to neglect vi (which means the 

information of the related word). After layer normalization, 

we send y� to the feed forward layer and obtain the embedding 

of global decoupled context. 

Afterwards, similarity of context S I Mcontext is computed 

as: 

SIMcontext = Q · SIMzocal + {3 · SIMglobal 

where a and {3 are hyper-parameters. These two hyper­

parameters determine the extent to which the model refers 

to local and global information. Both types of information are 

equally important for our approach, so we set both a and {3 
to 0.5 C:We have tried to change a and {3, and found that the 

performance is not sensitive to the ratio of the two in the 

appropriate range. When the ratio of a and {3 is very large or 

small, it is equivalent to using only local extractor or global 

extractor). 

Finally, emission score E is computed as: 

E = P * SIMcontext + (1- P) * SIMword 

where p is a hyper-parameter. p determines the extent to which 

we consider decoupled context. 

IV. EXPERIMENTS 

In our experiment, we evaluate our model following the 

dataset split provided by [10] on SNIPS [32]. Each episode 

contains support set S and query set Q. There are 7 different 

domains in SNIPS for slot tagging: Weather (yVe), Music (Mu), 

PlayList (PI), Book (Bo), Search Screen (Se), Restaurant (Re) 

and Creative Work (Cr). 

Statistical analyses of the original datasets are provided in 

the table I. 

TABLE I 
STATISTICS OF THE ORIGINAL DATASET. THE NUMBER OF LABELS 

("LABELS") IS COUNTED IN INSIDE/OUTSIDE/BEGINNING (lOB) SCHEMA. 

Dataset Domain I #Sent I #Labels 
We 2100 17 
Mu 2100 18 
p 2042 10 

SNIPS Bo :lU)O l:l 
Se 2059 15 
Re 2073 28 
Cr 2054 5 

[10] reorganizes the dataset for few-shot slot tagging in 

episode data setting. The overview of the data split on SNIPS 

is shown in the table II. 

TABLE IT 
OVERVIEW OF FEW-SHOT SLOT TAGGING DATA FROM SNIPS. "Avg.ISI" 

REFERS TO THE AVERAGE SUPPORT SET SIZE OF EACH DOMAIN, AND 

"#SENT" INDICATES THE NUMBER OF LABELLED SAMPLES IN BATCHES 

OF ALL EPISODES. 

Domain Avg.ISI #Sent Avg.ISI #Sent 
(1-shot) (1-shot) (5-shots) (5-shots) 

We 6.15 2000 28.91 1000 
Mu 7.66 2000 34.43 1000 
PI 2.96 2000 13.84 1000 
Bo 4.34 2000 19.83 1000 
Se 4.29 2000 19.27 1000 
Re 9.41 2000 41.58 1000 
Cr 1.30 2000 5.28 1000 

For each dataset, we utilize 5 domains for training, one 

domain for validation and one domain for evaluation. And we 

report the average F1 scores at the episode level as well. For 

each experiment, we run it ten times with different random 

seeds to alleviate the randomness in neural network training. 

In our experiments, we use the uncased BERT-Base [30] to 

obtain original word embedding. The models are trained using 

ADAM [33] (batch size 4 and learning rate 1e-5). For local 

context extractor, we set window size as 2 during training and 

testing. We set coupling coefficients a as 0.5 and {3 as 0.5. 

We set the proportion of decoupled context information p as 

0.5. In 5-shot setting, our batch size is 2. We train our models 

for 2 iterations in 1-shot setting and 4 iterations in 5-shot 

setting. Then, we save the parameters with best F1 scores on 

the validation domain. We run it ten times with ten different 

seed for each experiment to control randomness. 

A. Baseline 

Bi-LSTM is bidirectional LSTM [34] with Glove [35] 

embedding. It is trained on the support set and tested on the 

query sample. 

SimBERT This model directly predicts labels according to 

cosine similarity of word embedding of frozen BERT. 

TransferBERT is a domain transfer model with the NER 

setting of BERT. We pretrain it on source domains and fine­

tune it on target domain support set (only transfer bottleneck 

feature). Learning rate is set as 1e-5 in training and fine-tuning. 

Matching Network (MN) We employ the matching net­

work [7] with BERT embedding for classification. 

L- WPZ+CDT (LWPZC) WarmProtoZero (WPZ) [8] is 

a few-shot sequence labeling model which regards sequence 

labeling as the classification of each word. This model contains 

a Prototypical Network [21] which trained on source domains 

and directly utilizes it for word-level classification on the target 

domain. [10] enhanced WPZ by utilizing BERT and CDT. "L­

" in L- WPZ means that label-enhanced prototypes are applied 

by using semantic of the label name. 

L-TapNet L-TapNet [10] is a few-shot CRF model for slot 

tagging. It computes the label transition score with collapsed 

dependency transfer and computes the emission score with 

Label-enhanced TapNet. This model is the previous state-of­

the-art method for few-shot tagging. 

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on September 02,2022 at 06:10:21 UTC from IEEE Xplore.  Restrictions apply. 



TABLE ill 
F1 SCORES ON FEW-SHOT TAGGING OF SNIPS. 

MODEL We Mu PI Bo Se Re Cr Avg. 
Bi-LSTM 10.36±0.36 17.13±0.61 17.52±0.76 53.84±0.57 18.44±0.44 22.56±0.10 8.64±0.41 21.21±0.46 
SemBERT 36.10±0.00 37.08±0.00 35.11±0.00 68.09±0.00 41.61±0.00 42.82±0.00 23.91±0.00 40.67±0.00 

TransferBERT 55.82±2.75 38.01±1.74 45.65±2.02 31.63±5.32 21.96±3.98 41.79±3.81 38.53±7.42 39.06±3.86 
MN 21.74±4.60 10.68±1.07 39.71±1.81 58.15±0.68 21.21±1.20 32.88±0.64 69.66±1.68 36.72±1.67 

L-TapNet 73.21±1.46 60.97±2.23 69.24±3.34 84.53±1.23 74.44±3.54 72.48±0.98 67.44±2.30 71.76±2.15 
WPZC 73.56±0.93 58.40±1.11 68.93±0.95 82.32±0.78 79.69±0.55 73.40±0.75 70.25±1.22 72.37±0.90 

1-shot LWPZC 73.19±1.65 58.62±1.02 68.26±0.42 83.54±0.62 77.88±0.59 73.48±1.13 69.54±1.64 72.07±1.01 
w/o CAM (ours) 75.19±1.49 60.80±0.94 73.40±1.76 85.41±0.63 77.35±1.93 75.79±1.10 65.80±0.74 73.39±1.23 
w/o CWM (ours) 77.90±1.70 60.61±1.28 69.95±1.11 86.29±0.78 77.88±0.89 75.51±1.99 71.10±1.26 74.18±1.29 

DCEN (ours) 78.26±0.92 61.95±1.33 73.55±0.87 86.02±0.85 78.76±1.49 76.71±0.65 68.57±2.33 74.83±1.21 
MODEL We Mu PI Bo Se Re Cr Avg. 
Bi-LSTM 25.17±0.42 39.80±0.52 46.13±0.42 74.60±0.21 53.47±0.45 40.35±0.52 25.10±0.94 43.52±0.50 
SemBERT 53.46±0.00 54.13±0.00 42.81±0.00 75.54±0.00 57.10±0.00 55.30±0.00 32.38±0.00 52.96±0.00 

TransferBERT 59.41±0.30 42.00±2.83 46.07±4.32 20.74±3.36 28.20±0.29 67.75±1.28 58.61±3.67 46.11±2.29 
MN 36.67±3.64 33.67±6.12 52.60±2.84 69.09±2.36 38.42±4.06 33.28±2.99 72.10±1.48 47.98±3.36 

L-TapNet 84.45±1.38 70.83±1.38 81.26±2.36 88.84±1.04 87.16±1.02 81.45±1.14 75.95±1.88 81.42±1.46 
WPZC 82.91±0.85 69.23±0.56 80.85±1.18 90.69±0.43 86.38±0.47 81.20±0.45 76.75±1.59 81.14±0.79 

5-shot LWPZC 82.93±0.59 69.62±0.46 80.86±1.04 91.19±0.37 86.58±0.63 81.97±0.57 76.02±1.65 81.31±0.76 
w/o CAM (ours) 85.58±0.42 72.14±1.03 84.54±0.75 89.06±0.49 88.95±0.81 81.76±1.02 68.76±1.88 81.54±0.92 
w/o CWM (ours) 85.27±0.89 71.08±1.89 78.21±0.81 90.54±0.62 85.71±1.31 81.10±0.52 75.53±2.85 81.06±1.27 

DCEN (ours) 85.76±1.30 74.85±1.37 82.67±1.42 90.28±0.72 88.58±0.45 81.66±0.74 72.55±1.64 82.34±1.09 

We use results of Bi-LSTM, SemBERT, TransferBERT and 
MN from [10] and results of LWPZC and WPCZ from [13]. 
All of our models use vector projection (VPB) similarity 
function in the experiments. All experiments are performed 
on Pytorch and MindSpore 1. 

B. Main Results 

Table lli shows the result in both 1-shot and 5-shot slot 
tagging of SNIPS. Each column shows the F1 scores of taking 
the domain of the column header as target domain and other 
domains as source domain (train and dev). "w/o CAM/CWM'' 

means CAM/CWM is removed. Our method can outperform 
all baselines. As shown in the table, DCEN achieves the best 
performance and it outperforms L-TapNet by F1 scores of 
3.07 and 0.92 on 1-shot and 5-shot experiment in average 
respectively. Compared to L-TapNet, our model has better 
performance in almost all target domains. We contribute this to 
our explicit consideration of the relationship between contexts 
and words (In L-TapNet, this relationship is only implicitly 
manifested in the transition module of CRF and pretrained 
embedding). 

C. Analysis 

By comparing L-TapNet with our models, we can find that 
our proposed Context Window Module and Context Attention 
Module can improve the performance of the similarity-based 
model in both 1-shot and 5-shot cases which demonstrates the 
effectiveness of our approach. This model uses two extractors 
to capture decoulped context information and further develop 
the previous similarity-based model by making full use of 
context information. 

1 https://www.mindspore.cn/ 
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Fig. 5. Model performance at different proportion of decoupled context infor­
mation. pis the proportion of decoupled context information (as mentioned 
before) . When p = 0, the model degenerates to L-TapNet. 

Information composition To further understand the effect 
of decoupled context information, we test our model on Ad­
dToPlaylist and RateBook at different proportion of decoupled 
context information in Fig 5. In the left figure, most slots in 
AddToPlaylist (such as Bff-artist, B/1-entity_name) are more 
relevant with their decoupled context. As p increases from 0 to 
0.4, the F1 score improves significantly. This result proves the 
effectiveness of decoupled context information. On the con­
trary, the slots (such as Bff-rating_unit, Bff-rating_value) in 
RateBook of the right figure are less relevant with their decou­
pled context. In this case, the fact that the best performance is 
achieved when p = 0.5 rather than p = 0 shows the decoupled 
context can still improve the performance. Notwithstanding we 
only use decoupled context information (p = 1), our model has 
acceptable performance in AddToPlaylist. This result affirms 
that our model effectively exploits context information again. 

It is worth to note that the best performance occurs when 
decoupled context information is used (when p is between 
0.4 and 0.6). This illustrates the necessity of incorporating 
decoupled context with original word information. 

Ablation Study Ablation study results are shown in 
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table IV. Respectively, each of our components is removed, 
including: CAM and CWM. The results in the table IV show 
that both CAM and CWM play important roles in our model 
which means both local and global decoupled context are 
beneficial for slot tagging. As shown in the table lll, our 
model has better performance in some domains if we remove 
CAM or CWM. We speculate that this is due to the fact that 
global/local information is not important for some slots. The 
degree of dependence of different slot on local/global context 
is not the same and the distribution of slot is different in 
different domains. But from the final results, considering both 
local and global information is the best choice (best average 
performance and better robustness). 

TABLEN 
ABLATION STUDY OVER DIFFERENT COMPONENTS ON SLOT TAGGING 

TASK. RESULTS ARE AVERAGED F1-SCORE OF ALL DOMAINS. 

MODEL 1-shot 5-shots 
Ours 74.83 82.34 

-CAM -1.44 -0.79 

-CWM -0.65 -1.27 

-all -3.07 -0.92 

V. CONCLUSION 

In this paper, we propose the Decoupled Context Enhanced 
Network for few-shot slot tagging, which considers word 
information and context information separately to alleviate 
misleading effects of innate meanings of words. To extract 
the decoupled context, we use Context Window Module as 
local context extractor and Context Attention Module as global 
context extractor. Experimental results validate both local and 
global context extractors are effective. 
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